Parametric acoustic array formation in dispersive fluids
نویسندگان
چکیده
منابع مشابه
Acoustic dispersive prism
The optical dispersive prism is a well-studied element, which allows separating white light into its constituent spectral colors, and stands in nature as water droplets. In analogy to this definition, the acoustic dispersive prism should be an acoustic device with capability of splitting a broadband acoustic wave into its constituent Fourier components. However, due to the acoustical nature of ...
متن کاملNonlinear Dispersive Instabilities in Magnetic Fluids
An asymptotic nonlinear theory of the two superposed magnetic fluids is presented taking into account the spatial as well as temporal effects. A generalized formulation of the evolution equation governing the amplitude is developed which leads to the nonlinear Klein-Gordon equation. The various stability criteria are derived from this equation. Obtained also are the bell shaped soliton and the ...
متن کاملShock Waves in Dispersive Eulerian Fluids
The long-time behavior of an initial step resulting in a dispersive shock wave (DSW) for the one-dimensional isentropic Euler equations regularized by generic, third-order dispersion is considered by use of Whitham averaging. Under modest assumptions, the jump conditions (DSW locus and speeds) for admissible, weak DSWs are characterized and found to depend only upon the sign of dispersion (conv...
متن کاملAcoustic metafluids made from three acoustic fluids.
Significant reduction in target strength and radiation signature can be achieved by surrounding an object with multiple concentric layers comprised of three acoustic fluids. The idea is to make a finely layered shell with the thickness of each layer defined by a unique transformation rule. The shell has the effect of steering incident acoustic energy around the structure, and conversely, reduci...
متن کاملAcoustic Force Density Acting on Inhomogeneous Fluids in Acoustic Fields.
We present a theory for the acoustic force density acting on inhomogeneous fluids in acoustic fields on time scales that are slow compared to the acoustic oscillation period. The acoustic force density depends on gradients in the density and compressibility of the fluid. For microfluidic systems, the theory predicts a relocation of the inhomogeneities into stable field-dependent configurations,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of the Acoustical Society of America
سال: 1982
ISSN: 0001-4966
DOI: 10.1121/1.2019881